HTCA
Heat Transfer Compound - Aerosol

HTCA offers a way of applying a thin, even film of HTC and is especially useful for applications over larger areas. HTCA is recommended where the efficient and reliable thermal coupling of electronic components or heat dissipation between any surfaces are required. HTCA is a non-silicone paste, suitable for applications where silicones are prohibited, thus avoiding issues with silicone and low molecular weight siloxane migration.

- Aerosol product; ideal for application over larger areas
- Based on a non-silicone oil; avoids issues with silicone and LMW siloxane migration
- Good thermal conductivity; designed for use as a thermal interface material
- Non-curing paste; allows simple and efficient rework of components if required

Approvals
RoHS Compliant (2015/863/EU): Yes

Typical Properties
- Colour: White
- Base: Blend of synthetic fluids
- Thermo-conductive Component: Powdered metal oxides
- Thermal Conductivity (Guarded Hot Plate): 0.9 W/m*K
- Thermal Conductivity (Heat Flow): 0.7 W/m*K (calculated)
- Density @ 20°C (g/ml): 2.04
- Temperature Range: -50°C to +130°C
- Weight Loss after 96 hours @ 100°C: <1.0%
- Permittivity @ 106Hz: 4.2
- Volume Resistivity: 1 x 10^14 Ohms-cm
- Dielectric Strength: 42 kV/mm
- Cone Penetration @ 20°C: 300

Description
Heat Transfer Compound – Aerosol

Packing
200ml Aerosol

Order Code
HTCA200

Shelf Life
48 months
Directions for Use

Thermal pastes can be applied to the base and mounting studs of diodes, transistors, thyristors, heat sinks, silicone rectifiers and semi-conductors, thermostats, power resistors and radiators, to name but a few. When the contact surfaces are placed together, a firm metal-to-metal contact will only be achieved on 40 – 60% of the interface, depending on the smoothness of the surfaces. This means that air, which has relatively poor thermal conductivity, will account for the balance of the interface. Only a small amount of compound is required to fill these spaces and thus dramatically increase the effective surface area for heat transfer.

It is important to note that the quality of application of a thermal paste can be as important as the thermal conductivity of the material applied; best results are achieved when a uniform, thin coat is applied between the mating surfaces. Spray a thin, even layer of the compound onto one of the contact surfaces. Ensure that the entire interface is covered to avoid hot-spots from forming. Any excess paste squeezed out during the mounting process should be removed. Product contains flammable solvent therefore do not spray onto live electrical equipment or other sources of ignition. Please refer to the MSDS for further information.

Additional Information

There are many methods of measuring thermal conductivity, resulting in large variances in results. Electrolube utilise a heat flow method which takes into account the surface resistance of the test substrate, thus offering highly accurate results of true thermal conductivity. Some alternative methods do not account for such surface resistance and can create the illusion of higher thermal conductivity. Therefore, when comparing thermal conductivity measurements it is important to know what test method has been utilised. For more information please contact the Electrolube Technical Department.

The rate at which heat flows is dependent on the temperature differential, the thickness and uniformity of the layer, and the thermal conductivity of the material. Products with the same comparable thermal conductivity value may have very different efficiencies of heat transfer in the end application depending on how successfully a thin even film can be applied.

A full range of heat transfer products are available from Electrolube: high thermal conductivity pastes (HTCP), silicone based pastes for very high temperature applications (HTS), gap filling materials (HTCPX), Silicone RTVs (TCOR, TCER), epoxy adhesives (TBS) and encapsulation resins (ER2220, UR5633, SC2003).

Revision 3: Jan 2019